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Abstract-Sequential  data reconciliation algorithms have been developed for input-output models in linear dy,aamic 
systems. Existing filtering methods do not treat the case where there are measurement errors in the input variables. 
In our approach, the measurement errors in the input variables are optimally handled by the least squares method. 
This method shows good performance for input-output models. 
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INTRODUCTION 

Data reconciliation has received considerable attention to re-. 
solve inconsistencies between plant measurements and balance 
equations. A number of commercial data reconciliation software 
packages are available for steady-state processes [Ayral, 1994].. 
In order to enhance robustness of the calculations, the data recon- 
ciliation step can be accompanied by gross error detection I-Kim 
et at., 1995]. 

Most previous research on data reconcilialton has focused on 
linear steady-state systems. During the last several years, there,. 
have been several approaches proposed for nonlinear dynamic: 
systems. Data reconciliation for nonlinear dynamic systems was 
treated by Kim et al. 1-1991], Liebman et al. [-1992] and Ramamu- 
rthi and Bequette E1993]. Darouach and Zasadzinski [-1991], and 
Rollins and Devanathan [-1993] suggested data reconciliation al- 
gorithms for linear dynamic systems. A nonlinear data reconcilia-- 
tion program has been applied to reconcile actual plant: data from 
a feed-blend tank of an Exxon Chemicals plant [McBrayer, 1994]. 
In this paper we employ a model used in Darouach and Zasadzin.- 
ski, which has different discrete equations of the form EX~ ~l= 
BX~. This is called a singular or generalized dynamic model, be- 
cause the matrix E is singular and therefore the standard Kalman 
filter cannot be applied. 

In this article, sequential data reconciliation algorithms are de.- 
veloped for input-output models in linear dynamic systems. Unlike 
other filtering methods, the measurement errors in the input var- 
iables are optimally handled by least squares. 

PROBLEM STATEMENTS 

1. Linear Difference Equation 
Consider a dynamical system with input signal {u(t)} and output 

signal {y(t)}. Suppose that these signals are sampled in discrete 
time t=1,2,3, '"  and that the sampled values can be related 
through a linear difference equation. The general nth order differ- 
ence equation relating the input u(k) and output y(k) is 

tTo whom all correspondences should be addressed. 

y(k)+ a f t ( k -  1) + ' "  + a ,y(k-  n) = b,,u(k)+ b lu(k-  1) +. .-  
+ b ,u (k -  n) (la) 

n n 

or y(k)+ Z a~y(k-j)= Z bju(k-j)  (lb) 
J : 1  ) = 0  

where k is the integer time index, and aj and bj are the constant 
coefficients. 

The representation of Eq. (1) can be extended to systems that 
have multiple inputs and multiple outputs. Suppose there are m 
inputs and r outputs, and that the vectors U(k) and Y(k) are de- 
fined as 

The system can then be represented by the vector difference 
equation 

n n 

Y(k)+ s A,.Y(k-j)= ]g BjU(k-j)  (2) 
] l J:O 

in which & and B~ are constant coefficient matrices of dimension 
r •  and r •  respectively. 
2. Data Reconciliation in Linear Dynamic Systems 

Here we consider the problem of estimating the vector X, at 

time instants i=  1,2, '",k+ 1. From Eqs. (1) and (2) we can collect 
the (k+ 1) measurements and the k constraints as follows [Da- 
rouach and Zasadzinski, 1991]: 

Z = X * + e  (3) 

�9 kX* = 0 (4) 

where X* is a vector of true values of the variables and e is 
a vector of normally distributed random meas~arement noise with 
zero mean and known covariance matrix. 

Using this notation, the dynamic data reconciliation problem 
can be formulated analogous to the steady-state case, that is, 
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Min 1 (~[_  z)rv_ ,(~ _ Z) (51 

subject to 

~ 5 ~ = 0  

where V is the variance-covariance matrix of measurements. The 
solution of this problem is given in many references [e.g., Da-- 
rouach and Zasadzinski, 1991; Kuehn and Davidson, 1961]. For 
dynamic data reconciliation problems, a recursive solution based 
on the sequential method developed for steady-state case [Da- 
rouach et al., 1988] can be applied. 

DERIVATION OF ESTIMATION ALGORITHMS 

The dynamic data reconciliation problem can be solved using 
the steady-state sequential method [-Darouach and Zasadzinski, 
1991]. Their algorithms are applied to input-output models for 
linear dynamic systems. 
1. First Order Model 

y(k + 1) + a~y(k) = b,,u(k + 1) + b~u(k) (6) 

The above equation can be written 

EX~ + ,=  BX~ (7) 

where 

X~=[ y(k) ], E = [ 1 - b o ~  and B = ~ - a ,  bt] 
u(k) 

The reconciled estimates are calculated by the equations below. 

~ 5 = BZ~Br+ EVE ~ 

with 

Z~ = V -  VE r~,~EV 

(8a) 

(8b) 

(8c) 

(8d) 

~',~.,-~ is the first element of ~ .  v~5 and ~,~ t/~+x is the second 
element of ~+a,,~.~. If b,,=0, tl~,+t/#+l:l&,+l (measurement of u 
at k+ l ) .  Thus y~+~,,,.~ and u***z will be updated at every time 
step. fi,,~+~ can be calculated from the second element of X~,+~. 
y** 5,,~+~ is the output estimate at time instant k+  1 given the meas- 
urements up to k+ 1 and 6,~+ ~ is the input estimate at time in- 
stant k given the measurements up to k + l .  

2. Second Order Model 

y(k + 1) + a~y(k) + a2y(k- 1) = bou(k + 1) + bsu(k) + b~u(k - 1) (9) 

The above equation can be written 

EX~ ~ = BX~ + AX~ 5 (10) 

where 

~ = [  y(k)]  E = [ 1 - b o ] ,  B = [ - a ~  b13 and A = [ - a ~  b2] 
u(k) ' 

The estimates are calculated by the equations below. 

~* ~= P n ~  ~,,~ + P s ~ ,  + P~Z~+, ( l ib)  

[ '~k  1 : AE~ ,I~ -- .A~ + AZ<~ ~Br + BZ,~,-~ l)Ar + BZ~B ~ 
+ EVE z (1 lc) 

with 

[ Pn P25 ] [ - X~<k l~r~kA--  Z~kBT~kA VErf'I,A ] 
P]2 P~/=II--Xb-,Arn.B-X~BrakB VErn~B [ ( l ld)  
P~3 P23 J [Z~(k I~ArFtkE+E~,~BTFt~E I-VErFt~EJ 

~ ( k  l l k ] _ _ [ P i i ] ~ ( k - 2 ) ( k  1) P12~k 1Xk 1) P I 3 V  ] ( l le)  

* ^ 
~)~§ is the first element of X~+v~+~ and u~+v,+x is the third 
element of X~+v~+~. If bo=0, ~ + ~  can be calculated from the 

^ 
third element of X~j~+~. 

SIMULATION RESULTS 

1. First Order Model 

1 
G(s)= vs+ 1 (12) 

The first order model can be discretized exactly for a piecewise 
constant input [Seborg et al., 1989]. 

y(k + 1) + aft(k) = blu(k) (13) 

The estimates can be calculated sequentially with the initial con- 
ditions X~=Vy and Z~=V~. 

~'~ - t/~ + 1 = ( 1 -  VyfL)y~ + 5 + V, fZk(- algk. + bluD (14a) 

~a~:~ + t = (1 - b~X~f~k)uk + btX~k(a~yk/~ + y~ + ~) (14b) 

nk = 1/(a~X~ + b~E~ + V,) (14c) 

where 

X~ = V , -  VyFt~V, (14d) 

Z~ = Vu (14e) 

and ]E~ is the variance of the estimate ~ a  and Y~ is the variance 
of Yk,,. Since u,~ is equal to u~ in this case, Y-~ is V,. 

The percentage reduction in total errors in the data is computed 
as follows: 

Error Reduction in y (%)= [{X/(Y- Yt,~) 2 -  v / @ -  Yt-,*)z} / 
x/(y- y.~)q x lOO 

Error Reduction in u (%)=[{( ( V ~ - u , . ~ ) 2 - ~ ~ /  
~]xioo 

The data were simulated by a random number generator. By 
the use of the method proposed here the input and output varia- 
bles can be filtered simultaneously as shown in Fig. 1 (76% error 
reduction in y) and Fig. 2 (64% error reduction in u). Tables 
1 and 2 shows the error reductions of input and output variables 
as a function of the ratio of standard deviations. As (~y/f~u is de- 
creased from 20 to 0.05, the error reduction in y decreases expo- 
nentially from 92.3% to 1.7%, and the error reduction in u is 
increased exponentially from 0.3% to 73%. As shown in Fig. 3, 
the measurement errors of the output variable are reduced expo- 
nentially as % / ~  is increased. In other filtering problems, the 
input variables are assumed to be error-flee. But in practical sit- 
uations, measurements may include random and/or gross errors. 
In the worst case, there could be small errors in output variables, 
but large errors in input measurements. If large errors in the 
input variables are ignored, the filtered estimates from other meth- 
ods lose the reliability. Fig. 4 shows the reconciled estimates of 
the input variable when the input is assumed to be error-free, 
even though there exists a relatively large error in the input vat- 
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Fig. 1. Output reconciliation of G(s)= l / ( 5 s +  1) with oy=l). l  and o , =  
0.1. 
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Fig. 2. Input reconciliation of G(s)= l / ( 5 s +  1) with oy=O.Ol and ~ 
=0.2 .  

Table 1. Error reduction ofinput and output variables in the first order 
model, G ( s ) = l / ( 5 s + l )  

Std Y Err. red. Y Err. red. U Std Y Err. red. YErr.  red. U 

/Std U % % /Std U % % 

1/1 76.0 2.9 

1/2 60.5 7.0 

1/5 35.4 20.5 

1/10 17.4 40.5 

1/20 6.7 64.0 

1/1 76.0 2.9 

2/1 86.4 1.3 

5/1 93.4 0.5 

10/1 95.5 0.2 

20/1 96.3 0.1 

Table 2. Error reduction of input and output variables in the first order 
model, G(s)= ! / (15s+  1) 

Std Y Err. red. Y Err. red. U 

/Std U % % 

1/1 87.9 0.8 

1/2 79.0 1.7 , 

Std Y Err. red. Y Err. red. U 

/Std U % 

i/5 60.2 5.3 

1/10 43.0 12.7 

1/20 24.9 27.6 

1/1 87.9 0.8 

2/1 92.3 0.4 

5/1 94.2 0.1 

10/1 94.6 0.0 

20/1 94.6 0.0 

100 
1st order model , tau=5 
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Fig. 3. Error reduction as a function of Oy/O,, G(s)= l / (5s+  1). 
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Fig. 4. Input reconciliation of G(s )=  1/ (5s+ 1) with %,=0.02 and o ,=  

0,001 when the actual value of o. is 0.2. 
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iable. The actual standard deviation of the input is 0.02, but the 

estimates are calculated with o, = 0.001. The est imates are worse 

than the measured data. 

This method is more effective for fast processes which have 

small time constants. Table 3 indicates that for fast processes 

one should consider the errors in input variables more carefully. 

2. S e c o n d  Order  Model  

1 
G(s) = (15) 

~2s2 + 2 ~ s  + i 

1 
G(s) = (16) 

(~ls+ 1)(~2s+ 1) 

Two types of the second order model, Eqs. (15)-(16), are con- 

sidered. The first one is for an underdamped case and the second 

one is for an overdamped case. Both types of models are discre- 
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Table 3. Error reduction of input and output variables in the first order 
model with respect to time constant for or/or= 1 

Time constant Err. red. Y Err. red. U 
% % 

2 62.1 8.8 
5 76.0 2.9 

10 84.4 1.2 
20 89.4 0.6 

Table 4. Error reduction of input and output variables in the second 
order model, G(s)= l / (sZ+s+ 1) 

Std Y Err. red. Y Err. red. U Std Y Err. red. YErr.  red. U 
/Std U % % /Std U % % 

1/1 50.6 10.7 
1/2 31.4 20.2 
1/5 11.6 43.3 
1/10 4.4 62.3 
1/20 1.7 73.0 

1/1 50.6 10.7 
2/1 68.0 5.2 
5/1 83.9 1.7 

10/1 89.9 0.7 
20/1 92.3 0.3 

100 
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Fig. 6. Error reduction as a function of oy/o,, G(s )= l / ( s2+s+l ) .  

Table 5. Error reduction of input and output variables in the second 
order model, G(s)= l / (2s+ 1X0.5s+ 1) 

Std Y Err. red. Y Err. red. U Std Y Err. red. YErr.  red. U 
/Std U % % /Std U % % 

1/1 66.3 4.4 
1/2 49.7 9.1 
1/5 26.1 21.2 
1/10 12.2 37.9 
1/20 4.7 57.3 

1/1 66.3 4.4 
2/1 79.6 1.9 
5/1 89.4 0.7 

10/1 92.2 0.3 
20/1 93.2 0.2 
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Fig. 5. Output reconciliation of G(s)= l / (s :+s+ 1) with cy=0.1 and 
c~,= 0.05. 

tized to the following linear difference equation. 

y(k + 1) + my(k) + a2y(k - 1) = b]u(k) + b2u(k - 1) (17) 

Tables 4 and 5 show the error reduction percentage as a func- 
tion of the ratio of standard deviation of input and output varia- 
bles. The results are similar to those of the first order model. 

Fig. 5 shows the reconciled estimates for an underdamped process 
with ~= 1 and ~=0.5. The measured data are reconciled well (68% 
error reduction in y). Fig. 6 shows the error reduction as a func- 
tion of the ratio of standard deviations of output and input varia- 
bles. When the input is corrupted by relatively large errors, the 
method here should be applied to reconcile the plant data. 

CONCLUSION 

A data reconciliation method, which can treat input and output 
variables simultaneously, is proposed for the input-output models 
in linear dynamic systems. Unlike other filtering methods, the 
measurement errors in the input variables are optimally handled 
by the least squares method. If relatively large errors occur in 
the input variables, the data reconciliation method here should 
be applied. 
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