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Abstract —Sequential data reconciliation algorithms have been developed for input-output models in linear dynamic
systems. Existing filtering methods do not treat the case where there are measurement errors in the input variables.
In our approach, the measurement errors in the input variables are optimally handled by the least squares method.
This method shows good performance for input-output models.
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INTRODUCTION

Data reconciliation has received considerable attention to re-
solve inconsistencies between plant measurements and balance
equations. A number of commercial data reconciliation software
packages are available for steady-state processes [Ayral, 1994].
In order to enhance robustness of the calculations, the data recon-
ciliation step can be accompanied by gross error detection [Kim
et al, 1995].

Most previous research on data reconciliaiton has focused on
linear steady-state systems. During the last several years, there
have been several approaches proposed for nonlinear dynamic
systems. Data reconciliation for nonlinear dynamic systems was
treated by Kim et al. [1991], Liebman et al. [1992] and Ramamu-
rthi and Bequette [1993]. Darouach and Zasadzinski [1991], and
Rollins and Devanathan [1993) suggested data reconciliation al-
gorithms for linear dynamic systems. A nonlinear data reconcilia-
tion program has been applied to reconcile actual planr data from
a feed-blend tank of an Exxon Chemicals plant [McBrayer, 1994].
In this paper we employ a model used in Darouach and Zasadzin-
ski, which has different discrete equations of the form EX,,,=
BX,. This is called a singular or generalized dynamic model, be-
cause the matrix E is singular and therefore the standard Kalman
filter cannot be applied.

In this article, sequential data reconciliation algorithms are de-
veloped for input-output models in linear dynamic systems. Unlike
other filtering methods, the measurement errors in the input var-
iables are optimally handled by least squares.

PROBLEM STATEMENTS

1. Linear Difference Equation

Consider a dynamical system with input signal {u(t)} and output
signal {y(t)}. Suppose that these signals are sampled in discrete
time t=1,2,3,--- and that the sampled values can be related
through a linear difference equation. The general nth order differ-
ence equation relating the input u(k) and output y(k) is
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y&)+ayk—1)+ - + a,y(k —n)=bulk) + bjuk — 1+ ---
+butk—n) (1a)

or y(k)+ Ela,y(k—j): Eobju(k—j) (1b)
i j=
where k is the integer time index, and a; and b; are the constant
coefficients.
The representation of Eq. (1) can be extended to systems that
have multiple inputs and multiple outputs. Suppose there are m
inputs and r outputs, and that the vectors U(k) and Y(k) are de-

fined as
uy(k) yi(k)

Uk)= Y(k)=

yAk)

The system can then be represented by the vector difference
equation

un(K)

YK+ ZAYK—j)= ZOB,-U(k~ J) (2)
=1 7=

in which A; and B; are constant coefficient matrices of dimension
rXr and rXm respectively.
2. Data Reconciliation in Linear Dynamic Systems

Here we consider the problem of estimating the vector X, at
time instants i=1,2,--- k+ 1. From Egs. (1) and (2) we can collect
the (k+1) measurements and the k constraints as follows [Da-
rouach and Zasadzinski, 1991]:

Z=X*+¢e
O, X*=0

3
4)

where X* is a vector of true values of the variables and ¢ is
a vector of normally distributed random measurement noise with
zero mean and known covariance matrix.

Using this notation, the dynamic data reconciliation problem
can be formulated analogous to the steady-state case, that 1s,
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Min 5 (X -2V /(X ~2) ®)
X

subject to
@X=0

where V is the variance-covariance matrix of measurements. The
solution of this problem is given in many references [e.g, Da-
rouach and Zasadzinski, 1991; Kuehn and Davidson, 1961]. For
dynamic data reconciliation problems, a recursive solution based
on the sequential method developed for steady-state case [Da-
rouach et al, 1988] can be applied.

DERIVATION OF ESTIMATION ALGORITHMS

The dynamic data reconciliation problem can be solved using
the steady-state sequential method [Darouach and Zasadzinski,
1991]. Their algorithms are applied to input-output models for
linear dynamic systems.

1. First Order Model

y(k+ 1)+ ayy(k)=b,u(k + 1)+ byu(k) (6)

The above equation can be written

EXe. i =BX: (7)
where

Xk:[ iig ] E=[1-b,] and B=[—a, b,]

The reconciled estimates are calculated by the equations below.

e 1h1= Zoor -+ VETQU(BXes —EZ, ) (8a)

Kerer=Kew— ZHBTQLBRir —EZ, -)) (8b)

Q, '=BZ4BT+EVE! 8¢c)
with

Th=V-VETMLEV 8d)

Veswk-1 is the first element of )A(,, west and Ue. 14+1 IS the second
element of Xi:1ee1. If b, =0, Ges1se+1=Uss; (measurement of u
at k+1). Thus ¥i:14.1 and ues.; will be updated at every time
step. Ugx.; can be calculated from the second element of Xes 1.
Ve+14+1 15 the output estimate at time instant k+ 1 given the meas-
urements up to k+1 and Q.. is the input estimate at time in-
stant k given the measurements up to k+1.

2. Second Order Model

y(k+ D+ ayk)+ayk—1)=buk + 1)+ byuk) + bautk —1) (9

The above equation can be written

EX,.,=BX, +AX, ., 10)
where

Xk:[ z?;; ] E=[1-b,], B=[—a, b;] and A=[—a, b;]
The estimates are calculated by the equations below.
X 12 -1=PorXe- 14+ PrXua+ PosZs o (11a)
Kexr=PuXe 1a+ PXeat PiaZes (11b)
Q, '=AZE. e nAT+ AT BT+ BZf, AT+ BZLB!

+EVE’ (11c)
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with
Pu Py — b pATOLA - ZEBTQLA VE'QUA
[ Py, Po } =|1-Zhe- b ATOB—Z5HB'OLB  VETQ,B ] (11d)
Pi; Py The- pATOLE + Z4BTOLE I-VETOLE

k k k—1 k-1
[z(k—n(k—l) E(k—nk]_[Pllz(k~2)(k——1)+P12 k—1Xk— 1) PIBV

= - " lle
Zkktk—n Z:k Pﬁlzkk—lz)(k»1)+P222€k—11)(k—1) P23V] ( )

Verim+1 18 thf: first element of )A(.uwm and Uy 1441 is the third
element of X»Hl/kth If b,=0, U+, can be calculated from the
third element of Xgx+1.

SIMULATION RESULTS

1. First Order Model

1
ts+1

Gls)= (12)

The first order model can be discretized exactly for a piecewise
constant input [Seborg et al., 1989].
y(k+ 1)+ ay(k)=byulk) (13)

The estimates can be calculated sequentially with the initial con-
ditions Z¥=V, and Z¢=V..

Yo 1e01= (1= V020502 F V. O%(— aiFes + bruy) (142)

Uo s 1= (1= bIZEQ )W, + by ZEQ(arVie + Ve 1) (14b)

Q,=1/(aiZf+ bEEE+ V) (14¢)
where

B=V,-V,Q, (14d)

=V, (14e)

and X! is the variance of the estimate G, and Z! is the variance
of iz Since Gy is equal to u, in this case, Zf is V..

The percentage reduction in total errors in the data is computed
as follows:

Error Reduction in ¥ (%)=[{v/ ¥~ VmeP— V& — Yo}/
Vy— Virwe)?] X 100
Error Reduction in u (%)= [{(v/(u— Uy = /(U — Upue)?l/

V(U= ume)?] X 100

The data were simulated by a random number generator. By
the use of the method proposed here the input and output varia-
bles can be filtered simultaneously as shown in Fig. 1 (76% error
reduction in y) and Fig. 2 (64% error reduction in u). Tables
1 and 2 shows the error reductions of input and output variables
as a function of the ratio of standard deviations. As g,/c, is de-
creased from 20 to 0.05, the error reduction in y decreases expo-
nentially from 92.3% to 1.7%, and the error reduction in u is
increased exponentially from 0.3% to 73%. As shown in Fig. 3,
the measurement errors of the output variable are reduced expo-
nentially as o,/c, is increased. In other filtering problems, the
input variables are assumed to be error-free. But in practical sit-
uations, measurements may include random and/or gross errors.
In the worst case, there could be small errors in output variables,
but large errors in input measurements. If large errors in the
input variables are ignored, the filtered estimates from other meth-
ods lose the reliability. Fig. 4 shows the reconciled estimates of
the input variable when the input is assumed to be error-free,
even though there exists a relatively large error in the input var-
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Fig. 1. Output reconciliation of G(s)= 1/(Ss+ 1) with 5,=0.1 and o, =
0.1.
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Fig. 2. Input reconciliation of G(s)=1/(5s+1) with 5,=90.01 and o,
=0.2.

Table 1. Error reduction of input and output variables in the first order
model, G(s)=1/(5s+1)

Std Y Err. red. Y Err. red. U} Std Y Err. red. Y Err. red. U
/Std U % % /Std U % %
1/1 76.0 29 11 76.0 29
1/2 60.5 70 2/1 86.4 13
1/5 354 20.5 5/1 934 0.5
1/10 174 40.5 10/1 95.5 0.2
1/20 6.7 64.0 20/1 96.3 0.1

iable. The actual standard deviation of the input is 0.02, but the
estimates are calculated with o, =0.001. The estimates are worse
than the measured data.

This method is more effective for fast processes which have
small time constants. Table 3 indicates that for fast processes
one should consider the errors in input variables more carefully.
2. Second Order Model

Table 2. Error reduction of input and output variables in the first order
model, G(s)=1/(15s+1)

Std Y Err. red. Y Err. red. U| Std Y Err. red. Y Err. red. U
/Std U % % /Std U % %
11 879 0.8 1/1 379 0.8
1/2 79.0 17 2/1 923 04
1/5 60.2 53 5/1 94.2 0.1
1/10 43.0 12.7 10/1 94.6 0.0
1/20 249 276 - 20/1 94.6 0.0

18t order model , lau=5
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Fig. 3. Error reduction as a function of o,/0,, G(s)=1/(5s+1).
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Fig. 4. Input reconciliation of G(s)=1/(5s+1) with 5,=0.02 and o,=
0.001 when the actual value of o, is 0.2.

- 1
G(s)= vs?+2tis+1 as)
()= 1 (16)

(tis+ D(tes+ 1)

Two types of the second order model, Eqs. (15)-(16), are con-
sidered. The first one is for an underdamped case and the second
one is for an overdamped case. Both types of models are discre-
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Table 3. Error reduction of input and output variables in the first order
model with respect to time constant for oy/c,=1

Time constant Err. red. Y Err. red. U
T % o
2 62.1 88
5 76.0 29
10 844 1.2
20 89.4 0.6

Table 4. Error reduction of input and output variables in the second

order model, G(s)=1/(s*+s+1)

Std Y Err. red. Y Err. red. U] Std Y Err. red. Y Err. red. U
/Std U % % /Std U % %
1/1 50.6 10.7 1/1 50.6 10.7
1/2 314 20.2 2/1 68.0 52
1/5 116 43.3 5/1 839 1.7
1/10 44 62.3 10/1 89.9 0.7
1/20 1.7 73.0 20/1 92.3 0.3

Table 5. Error reduction of input and output variables in the second
order model, G(s)=1/(2s+1X0.5s+ 1)

Std Y Err. red. Y Err. red. Ul Std Y Err. red. Y Err. red. U
/Std U % % /Std U % %
1/1 66.3 44 11 66.3 44
1/2 49.7 9.1 2/1 79.6 19
1/5 26.1 212 5/1 894 0.7
1/10 12.2 379 10/1 92.2 0.3
1/20 47 57.3 20/1 93.2 0.2
u[-- - — e —
12 ﬁ ‘ © - o o of
’4\r i 0ge ®° , 0% o0
~ o By
1t |] \..'.qa;‘ ~2.4 R .L:_,Q@/ DR ’oﬁ’f\-fuﬁg“q}, &
i -:!_r . ] v Og o o ‘]
OBi' |: @ X 7%, o ©
i |
2 os}
é | l
DA} I - = lrue |
| | ©  measured I
| — estimaled J
02! e
|
O‘r:u,l,
02— — I W T p— ]
0 10 0 30 40 50 60 70 80 90 100

Time

Fig. 5. Output reconciliation of G(s)= 1/(s*+s+ 1) with ,=0.1 and
c,=0.05.

tized to the following linear difference equation.
y(k+ D+ ay(k) + azy(k — 1) =bu(k) + bouk — 1) an

Tables 4 and 5 show the error reduction percentage as a func-
tion of the ratio of standard deviation of input and output varia-
bles. The results are similar to those of the first order model.

March, 1996

L-W. Kim et al.

2nd order model, lau=1, zeta~0.5
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Fig. 6. Error reduction as a function of c,/0., G(s)=1/(s*+s+1).

Fig. 5 shows the reconciled estimates for an underdamped process
with t=1 and {=0.5. The measured data are reconciled well (68%
error reduction in y). Fig. 6 shows the error reduction as a func-
tion of the ratio of standard deviations of output and input varia-
bles. When the input is corrupted by relatively large errors, the
method here should be applied to reconcile the plant data.

CONCLUSION

A data reconciliation method, which can treat input and output
variables simultaneously, is proposed for the input-output models
in linear dynamic systems. Unlike other filtering methods, the
measurement errors in the input variables are optimally handled
by the least squares method. If relatively large errors occur in
the input variables, the data reconciliation method here should
be applied.
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